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Abstract
The inference of entangled quantum states by recourse to the maximum
entropy (MaxEnt) principle is considered in connection with the recently
pointed out problem of fake inferred entanglement (Horodecki R et al 1999
Phys. Rev. A 59 1799). We show that there are operators Â, both diagonal
and non-diagonal in the Bell basis, such that, when the expectation value 〈Â〉
is taken as prior information, the problem of fake entanglement is not solved
by adding a new constraint associated with the mean value of Â2 (unlike what
happens when the partial information is given by the expectation value of a
Bell operator). The fake entanglement generated by the MaxEnt principle is
also studied quantitatively by comparing the entanglement of formation of the
inferred state with that of the original one.

PACS numbers: 03.67.-a, 89.70.+c, 03.65.Ta

1. Introduction

The inference of entangled quantum states by recourse to the maximum entropy (MaxEnt)
principle has been recently considered in the literature [1–5]. In particular, the question
of how to estimate in a reliable way the amount of entanglement of a bipartite quantum
system when only partial, incomplete information about its state is available was addressed
by Horodecki et al [1]. Various strategies have been advanced in order to tackle this
problem [1,3–6]. Horodecki’s question has also been considered in connection with procedures
for the entanglement purification of unknown quantum states [7]. The motivation behind these
lines of inquiry is that quantum entanglement is the basic resource required to implement
several of the most important processes studied by quantum information theory [8–10],
such as quantum cryptographic key distribution [11], quantum teleportation [12], superdense
coding [13], and quantum computation [14, 15]. A state of a composite quantum system is
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called ‘entangled’ if it cannot be represented as a mixture of factorizable pure states. Otherwise,
the state is called separable. The above definition is physically meaningful because entangled
states (unlike separable states) cannot be prepared locally by acting on each subsystem
individually [16]. Nowadays there is general consensus on the fact that the phenomenon of
entanglement is one of the most fundamental and non-classical features exhibited by quantum
systems [8].

If one has enough information it is possible to determine the amount of entanglement of a
quantum system even if the available information does not allow for a complete knowledge of
the system’s state. An interesting example of this situation was recently discussed by Sancho
and Huelga [6], who studied the minimal experimental protocol required for determining the
entanglement of a two-qubits pure state from local measurements. Another important result
obtained by Sancho and Huelga is that the knowledge of the expectation value of just one
observable (local or not) does not suffice to determine the entanglement of a given unknown
pure state of two particles [6]. The case in which the prior information is not sufficient for a
complete determination of the amount of entanglement was further examined by Horodecki
et al [1]. These authors did not restrict their analysis to pure states. They assumed that the
available information consists of the mean values of a given set of observables Âi . Jaynes’
MaxEnt principle [17, 18] provides a general inference scheme to treat this kind of situation.
According to Jaynes’ principle, one must choose the state yielding the least unbiased description
of the system compatible with the available data. That state is provided by the statistical
operator ρ̂ME that maximizes the von Neumann entropy S = − Tr(ρ̂ ln ρ̂) subject to the
constraints imposed by normalization and the expectation values 〈Âi〉 = Tr(ρ̂Âi) of the
relevant observables Âi .

Even though Jaynes’ principle does provide a very satisfactory answer in many
situations [17, 18], Horodecki et al [1] showed that the straightforward application of Jaynes’
prescription in its usual form is not always an appropriate strategy for dealing with entangled
states. It was shown in [1] that the standard implementation of Jaynes’ principle may
create ‘fake’ entanglement. For example, the MaxEnt density matrix may correspond to an
entangled state even if there exist separable states compatible with the prior information. Since
quantum entanglement is, in many cases, the basic resource needed when processing quantum
information [1], statistical inference procedures that overestimate the amount of available
entanglement should be handled with care. Furthermore, it is well known that local operations
and classical communication (LOCC) can never increase the amount of entanglement between
remote systems, but they can make it decrease [8]. As a consequence, one should often bet
on the decrease of entanglement and not be very ‘optimistic’ when estimating the available
amount of this resource. The above considerations suggests that, in order to deal with some
situations involving entanglement, the usual form of Jaynes’ prescription needs to be modified
or supplemented in an appropriate way. Various such schemes have been proposed. Horodecki
et al [1] proposed a combined strategy based on a constrained minimization of entanglement
followed by a maximization of the von Neumann entropy. Alternatively, Abe and Rajagopal [5]
explored the possibility of inferring entangled states by recourse to a variational principle based
on non-extensive information measures.

Up to now, all the work done in connection with Horodecki’s problem of fake inferred
entanglement focused on that particular case in which the prior information is given by the mean
value of the Bell operator [1, 3–5]. The main purpose of the present effort is to explore what
happens when the available prior information consists of the expectation value of operators
exhibiting a more general form. Particular attention is going to be paid to operators non-
diagonal in the Bell basis. We are going to show that the prescription proposed in [4] for
solving the problem of fake entanglement is not universally applicable. We will show that there
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exist operators, both diagonal and non-diagonal in the Bell basis, for which the aforementioned
prescription fails.

The paper is organized as follows. In section 2 we revisit, from a different point of view
than the one employed in [1,4,5], the problem of ‘fake entanglement’ arising when a quantum
state is inferred on the basis of partial information related to the Bell observable. The inference
of entangled states from prior information associated with observables non-diagonal in the Bell
basis is considered in sections 3 and 4. Finally, some conclusions are drawn in section 5.

2. The expectation values of the Bell observable and its square as input information

Following Horodecki et al [1] let us assume that the prior (input) information is given by the
expectation value b of the Bell–CHSH observable [19]

B̂ =
√

2
(
σx ⊗ σx + σz ⊗ σz

) = 2
√

2
(|+〉〈+| − |�−〉〈�−|) (1)

which is defined in terms of the components of the well known Bell basis,

|∓〉 = 1√
2

(|11〉 ∓ |00〉)
|�±〉 = 1√

2

(|10〉 ± |01〉). (2)

The Bell observable is nonlocal. In order to measure the Bell observable one cannot rely just
upon LOCC between the parts (that is, LOCC operations). It cannot be measured without
interchange of quantum information between the observers [1].

The MaxEnt state obtained by recourse to the standard prescription, when the sole available
information is given by b = 〈B̂〉, is described by the density matrix [1]

ρ̂ME(b) = 1

4

[(
1 +

b√
2

+
b2

8

)
|+〉〈+| +

(
1 − b√

2
+
b2

8

)
|�−〉〈�−|

+

(
1 − b2

8

)(|�+〉〈�+| + |−〉〈−|)]. (3)

Rajagopal [4] and Abe and Rajagopal [5] showed that the inclusion of σ 2 = 〈B̂2〉 within
the input data set entails important consequences for the inference of entangled states. The main
idea of Rajagopal’s proposal [4] is to consider the density matrix ρ̂MS obtained by considering
both mean values b = 〈B̂〉 and σ 2 = 〈B̂2〉 as constraints in the MaxEnt prescription, and
assuming that the mean value of B̂2 adopts the minimum value compatible with the given
value of b. Rajagopal proved that ρ̂MS is separable if and only if b <

√
2. The method

employed by Rajagopal to characterize the states ρ̂MS of minimum-σ 2 rests heavily on the
particular form of the Bell operator. A different approach is needed if one wants to implement
Rajagopal’s inference scheme when the input information consists of the mean value of more
general observables. It is convenient now to briefly revisit the example corresponding to
the Bell observable in order to (i) illustrate the viewpoint that we are going to adopt when
considering more general situations, and (ii) clarify the relationships between the results we
are going to report in this paper and those previously discussed in the literature.

The operators B̂ and B̂2 verify the relations

B̂2 = 16|+〉〈+| − 2
√

2B̂

= 16|�−〉〈�−| + 2
√

2B̂. (4)

It is easy to see, computing the trace of the above equations, that

σ 2 � 2
√

2 |b| (5)
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and, consequently, the minimum value of σ 2 compatible with a given value of b is

σ 2 = 2
√

2 |b|. (6)

From the trace of equation (4) it also transpires that density matrices with the minimum value
of σ 2 compatible with a given value of b comply with

〈+|ρ̂|+〉 = 0 (if b < 0)

〈�−|ρ̂|�−〉 = 0 (if b > 0).
(7)

This means that a state complying with the minimum uncertainty requirement belongs to the
three-dimensional subspace spanned by the vectors {|�+〉, |�−〉, |−〉} (b < 0), or by the
vectors {|�+〉, |+〉, |−〉} (b > 0). For the density matrices defined within this subspaces we
have

b = −2
√

2 〈�−|ρ̂|�−〉 (if b < 0)

b = 2
√

2 〈+|ρ̂|+〉 (if b > 0).
(8)

The matrices provided by Rajagopal’s scheme are

ρ̂MS = −b
2
√

2
|�−〉〈�−| +

1

2

(
1 +

b

2
√

2

) [|�+〉〈�+| + |−〉〈−|] (if b < 0)

ρ̂MS = b

2
√

2
|+〉〈+| +

1

2

(
1 − b

2
√

2

) [|�+〉〈�+| + |−〉〈−|] (if b > 0).
(9)

States that are diagonal in the Bell basis (2) are separable if and only if they have no eigenvalue
larger than 1/2 [1]. Hence, it follows from equation (9) that the states ρ̂MS are separable if and
only if |b| < √

2.
Let us now consider general minimum uncertainty states (that is, states ρ̂ verifying (6)

but not necessarily of the MaxEnt form). Expressing the matrix elements of ρ̂ in the Bell
basis (2), let us equate all the non-diagonal elements to zero and leave unchanged the diagonal
ones. The new density matrix ρ̂D thus obtained has always less entanglement than the original
ρ̂ [1]. If the original ρ̂ is such that b >

√
2, then the matrix ρ̂D (which is diagonal in the

Bell basis) will have one eigenvalue greater than 1/2 (see equation (8)). Thus, ρ̂D is entangled
and so is ρ̂. Summing up, there is no separable density matrix complying with the minimum-
σ 2 condition (6) and having b >

√
2. This means that, for b >

√
2, the inference scheme

proposed by Rajagopal does not produce ‘fake’ inferred entanglement. At least when the
input data is related to the Bell observable (1), Rajagopal’s prescription does not lead to an
entangled inferred state ρ̂MS if there are separable states compatible with the constraints b and
σ 2. This is the main result obtained by Rajagopal [4, 5], although he arrived to it by recourse
to a different line of reasoning.

Quantitative measures of entanglement constitute interesting tools for studying the
entanglement-related properties exhibited by the standard MaxEnt scheme and other statistical
inference methods. Notice that both Horodecki’s and Rajagopal’s discussions of the problem of
fake inferred entanglement only distinguish between separable and entangled states. No degree
of entanglement is thereby ascertained. However, as is well known, entangled states differ in
the amount of entanglement they have. A quantitative measure of entanglement enables us to
compare the degree of entanglement of both (i) the inferred quantum state ρ̂inferred yielded by
an inference scheme when only partial information is available about the ‘true’ state ρ̂true of the
system and (ii) the entanglement of ρ̂true. When both states ρ̂inferred and ρ̂true are entangled, we
would like to know the amount of entanglement that each of these statistical operators carries
with it. A physically motivated measure of entanglement is provided by the entanglement of
formationE[ρ̂] [20]. This measure quantifies the resources needed to create a given entangled
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Figure 1. The entanglement of formation E[ρ̂], as a function of (i) the expectation value b of the
Bell operator, (ii) the MaxEnt density matrix ρ̂ME (equation (3)) (upper solid curve), and (iii) the
minimum-σ 2 density matrix ρ̂MS (equation (9)) (lower solid curve). The results corresponding to
the density matrix ansatz (14) (dashed curves) are shown in the inset.

state ρ̂. As explained in [8, 20], E[ρ̂] is equal to the asymptotic limit (for large n) of a
certain quotient m/n. Here m is the number of singlet states needed to create n copies of the
state ρ̂ when the optimum procedure based on local operations is employed. Obviously, the
entanglement of formation of a separable state is equal to zero, that is E(ρ̂sep.) = 0. For the
particular case of two-qubits states, Wootters obtained an explicit expression forE[ρ̂] in terms
of the density matrix ρ̂ [21]. Wootters’ formula reads [21]

E[ρ̂] = h

(
1 +

√
1 − C2

2

)
(10)

where

h(x) = −x log2 x − (1 − x) log2(1 − x) (11)

and C stands for the so-called concurrence of the two-qubits state ρ̂. The concurrence is given
by

C = max(0, λ1 − λ2 − λ3 − λ4) (12)

λi, (i = 1, . . . , 4) being the square roots, in decreasing order, of the eigenvalues of the matrix
ρ̂ρ̃, with

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (13)

The above expression is to be evaluated by recourse to the matrix elements of ρ̂ computed with
respect to the product basis.

Figure 1 depicts the entanglement of formation as a function of the input data b (for b > 0).
Two types of inferred density matrix are used to compute the entanglement of formation,
namely (i) the density matrix ρ̂ME yielded by the standard MaxEnt procedure (upper solid
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curve) and (ii) the density matrix ρ̂MS provided by Rajagopal’s minimum-σ 2 scheme (lower
solid curve).

Let us suppose that the ‘true’ state of the system is described by a density matrix of the
form

ρ̂T(α) =
(
b

2
√

2
+ α

)
|+〉〈+| + α|�−〉〈�−|

+
1

2

(
1 − b

2
√

2
− 2α

) (|−〉〈−| + |�+〉〈�+|). (14)

The (‘true’) density matrices belonging to the above family are characterized by a parameter
α and verify Tr(ρ̂TB̂) = b. We assume that the only knowledge we have about ρ̂T is given by
the mean value b. From this piece of data we can determine the inferred matrices ρ̂ME and ρ̂MS

provided, respectively, by the standard MaxEnt and Rajagopal’s prescriptions. In the inset of
figure 1 we can see, together with the entanglement of formation of both ρ̂ME and ρ̂MS, the
behaviour (as a function of b) of the entanglement of formationE[ρ̂T(α)], i.e. that of the ‘true’
state.

We believe that the (b,E(b))-plane depicted in figure 1, representing input information
b versus the inferred entanglement E(b), constitutes a useful device for visualizing the
entanglement-related properties of an inference scheme. In figure 1 we can compare how both
the standard MaxEnt scheme, and the one advanced by Rajagopal, behave in the (b,E(b))-
plane. The most noteworthy feature of figure 1 is that (when the input information is related to
the Bell observable) the results obtained using the usual MaxEnt method do not seem to differ
too much from those obtained using Rajagopal’s prescription.

3. Input information associated with observables non-diagonal in the Bell basis

As already mentioned, both Horodecki and Rajagopal treatments of the problem of fake inferred
entanglement focused on the case of prior knowledge related to the Bell observable. We want
to explore here to what extent the conclusions reached by those researchers are valid when the
available prior information consists on the expectation values of more general observables. In
particular, we want to explore what happens when observables non-diagonal in the Bell basis
are considered. As we shall presently see, an interesting example illustrating new aspects of
the phenomenon of fake entanglement is provided by the quantum observable associated with
the Hermitian operator

Â = κ(|1〉〈1| + |3〉〈3|) + λ|2〉〈2| (15)

where κ and λ are real parameters such that

κ � 0 � λ (16)

and whose eigenvectors |i〉 (i = 1, . . . , 4) are

|1〉 = 1√
2

(|11〉 + |00〉)
|2〉 = 1√

2

(|11〉 − |00〉)
|3〉 = |01〉
|4〉 = |10〉.

(17)

It is clear that Â is non-diagonal in the Bell basis. The observable Â is nonlocal. It cannot be
measured without interchange of quantum information between the observers. Consequently,
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and as far as its nonlocality properties are concerned, the observable Â has the same status as
the Bell observable considered by Horodecki [1], Rajagopal [4] and Abe and Rajagopal [5].
Sancho and Huelga [6] recently proved that the knowledge of the expectation value of just
one observable (even if the observable is nonlocal) is not enough to determine completely
the amount of entanglement of a given, unknown, bipartite pure state. This important result
immediately raises the question of how reliably the entanglement of an unknown quantum state
can be inferred from the sole knowledge of the mean value of a nonlocal observable. We are
going to explore here some aspects of this question, mainly in connection with the problem of
fake inferred entanglement. Let us suppose that we know the expectation value a of Â, given
by

a = Tr(ρ̂Â) = κ(〈1|ρ̂|1〉 + 〈3|ρ̂|3〉) + λ〈2|ρ̂|2〉. (18)

Following the proposal first advanced in [4] (see also [3,5]) we are going to incorporate a new
constraint associated with the expectation value of

Â2 = κ2(|1〉〈1| + |3〉〈3|) + λ2|2〉〈2| (19)

which is

σ 2 = Tr(ρ̂Â2) = κ2(〈1|ρ̂|1〉 + 〈3|ρ̂|3〉) + λ2〈2|ρ̂|2〉. (20)

According to the strategy suggested in [4], the problem of fake inferred entanglement can be
solved if in order to describe our system we adopt a density matrix ρ̂MS complying with two
requisites. First, ρ̂MS must have the MaxEnt form corresponding to the constraints associated
with the expectation values of both Â and Â2. Secondly, the expectation value σ 2 must adopt
the lowest value compatible with the given value of a. Notice that the mean value a = 〈Â〉
is the only independent input data. For the sake of simplicity we are going to restrict our
considerations to the case of positive values of 〈Â〉.

The mean values of Â and Â2 are related by

σ 2 = κa + λ(λ− κ)〈2|ρ̂|2〉 (21)

which implies that those mixed states characterized by exhibiting the minimum possible σ 2-
value compatible with a given a > 0 must verify 〈2|ρ̂|2〉 = 0. Consequently, for those states
with minimum-σ 2 we have

σ 2 = κa. (22)

When we have a single constraint corresponding to the mean value of Â, the MaxEnt
density matrix is

ρ̂IME = 1

Z
exp(−βÂ) (23)

where β is a Lagrange multiplier and Z = Tr(exp(−βÂ)). Alternatively, ρ̂IME can be cast as

ρ̂IME = 1

1 + 2w + wλ/κ
[
w
(|1〉〈1| + |3〉〈3|) + wλ/κ |2〉〈2| + |4〉〈4|] (24)

where w = exp(−βκ) verifies

a

κ
= 2w + (λ/κ)wλ/κ

1 + 2w + wλ/κ
. (25)

The MaxEnt statistical operator associated with the expectation values a and σ 2 as input
information is

ρ̂IIME = 1

Z
exp(−βÂ− γ Â2) (26)
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where β and γ are appropriate Lagrange multipliers and the partition function Z is given by

Z = Tr(exp(−βÂ− γ Â2)). (27)

The matrix ρ̂IIME can be expressed explicitly in terms of the input mean values a and σ 2,

ρ̂IIME = 1

2

σ 2 − λa

κ(κ − λ)

(|1〉〈1| + |3〉〈3|) +
κa − σ 2

λ(κ − λ)
|2〉〈2| +

σ 2 − a(κ + λ) + λκ

λκ
|4〉〈4|. (28)

When the further requirement of a minimum value for σ 2 is imposed, the above MaxEnt density
matrix reduces to

ρ̂MS = a

2κ

(|1〉〈1| + |3〉〈3|) +
(

1 − a

κ

)
|4〉〈4|. (29)

Since we always have κ � a, the above matrix is positive semidefinite.
Now, in order to find out whether Rajagopal’s prescription is plagued with the problem

of fake inferred entanglement (when applied in connection with the observable Â), we need
to proceed according to what follows. First, we adopt a form for the ‘true’ density matrix
describing the system. Second, we assume that the only available information about the true
state consists on the expectation value of Â. From this sole piece of data we obtain, via
the inference scheme we are studying, the inferred density matrix. Finally, we compare the
entanglement properties associated with the original, true density matrix with the entanglement
properties exhibited by the inferred one. In particular, we can evaluate on both matrices an
appropriate quantitative measure of entanglement. In what follows we are going to assume
that the true state of the system is described by an statistical operator belonging to the family
of density matrices

ρ̂S = p|1〉〈1| + α|3〉〈3| + (1 − p − α)|4〉〈4| (30)

where p and α are real positive parameters verifying

0 � p � 1

0 � α � 1 − p.
(31)

Notice that the ‘true’ density matrices (30) that we are trying to infer by recourse to different
schemes are not of the MaxEnt form, nor of the form associated with any other statistical
inference scheme. The expectation values of Â and Â2, evaluated on ρ̂S are

a = pκ + ακ (32)

and

σ 2 = pκ2 + ακ2. (33)

Suppose we are given the expectation values a and σ 2 corresponding to a given state belonging
to the family (30) (notice that, for this family of density matrices, the mean values a and σ 2

always verify the minimum-σ 2 condition (22)). We can take those mean values as input
information and generate the concomitant inferred density matrix. That is, we can associate a
MaxEnt state to each member of (30). The performance of the inference scheme can be studied
by comparing the entanglement properties of a member of the parametrized family (30) with
those of the concomitant inferred state. As a first step we are going to find out, by recourse to
Peres’ separability criterion [22], whether there are separable states of the form (30) leading to
entangled inferred states. Peres’ criterion is based on a partial transposition transformation [22].
To be more specific, let the density matrix elements (with respect to a product basis) of a
statistical operator ρ̂ be

ρmµ,nν = 〈mµ|ρ̂|nν〉 (34)
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where Latin indices refer to the first subsystem and Greek indices to the second one. The
partial transpose ρ̂PT of ρ̂ is a matrix whose elements are obtained by the partial transposition
of the elements of ρ̂, i.e.

ρ̂PT
mµ,nν = ρ̂nµ,mν. (35)

It can be shown that ρ̂ is separable if and only if ρ̂PT has no negative eigenvalues [23]. If we
apply the Peres criterion to the minimum-σ 2 MaxEnt density matrix ρ̂MS (equation (29)) we
find that there is only one eigenvalue of the partial transpose matrix that may adopt negative
values. This eigenvalue is

δ = − a

4κ
+

1

2
− 1

4

√
a

κ

(
10
a

κ
− 12

)
+ 4. (36)

Hence, we have

a/κ � 8/9 ⇐⇒ δ � 0

a/κ > 8/9 ⇐⇒ δ < 0.
(37)

Consequently, ρ̂MS is separable if a/κ � 8/9 and entangled otherwise. Using the Peres
criterion we can also determine just when the parametrized (true) density matrix ρ̂S is separable.
For the considerations that follow it will prove convenient to rewrite ρ̂S in terms of the
expectation value a = Tr(ρ̂SÂ),

ρ̂S =
(a
κ

− α
)

|1〉〈1| + α|3〉〈3| +
(

1 − a

κ

)
|4〉〈4|. (38)

It is important to stress that the above expression describes the same family of mixed states
defined by equation (30). The states ρ̂S associated with equation (38) still depend on two
independent parameters, i.e. α and a/κ . Equation (38) is just a re-parametrization of the
family (30) where, for the sake of convenience, we have chosen a/κ = Tr(ρ̂SÂ)/κ as one of
the two relevant parameters. The separability of ρ̂S is determined by the quantity

Q = 1

2
− a

2κ
+
α

2
− 1

2

√
2
(a
κ

)2
− 2a

κ
+ 1 − 2α + 2α2. (39)

The statistical operator ρ̂S is separable ifQ � 0 and entangled otherwise. The boundaries (in
the plane (α, a)) between the separability and the entangled regions corresponding to (i) the
density operators ρ̂S, (ii) the standard MaxEnt statistical operators ρ̂IME and (iii) the minimum-
σ 2 MaxEnt density matrices ρ̂MS are depicted in figure 2, where we take κ = 1 and λ = −1.
Notice that only those points with α < a are physically meaningful, since (α, a) pairs not
subject to that inequality lead to a matrix ρ̂S with one negative eigenvalue. Figure 2 is to be
interpreted as follows. There are three density matrices associated with each point in the plane
(α, a):

• The (‘true’) ρ̂S matrix given by the expression (38).
• The (inferred) density matrix ρ̂IME, of the standard MaxEnt form (23), (24).
• The (inferred) density matrix ρ̂MS of the minimum-σ 2 MaxEnt form (29).

For all the three aforementioned density matrices the expectation value of Â is a (that is,
a = Tr(ρ̂MSÂ) = Tr(ρ̂IME) = Tr(ρ̂SÂ)). The density matrix ρ̂MS is the one yielded by
Rajagopal’s prescription if one tries to infer ρ̂S from the sole knowledge of the expectation
value a = Tr(ρ̂SÂ). The standard MaxEnt procedure, instead, would lead to ρ̂IME. Using
the Peres criterion we can determine when the inferred density matrix ρ̂IME is entangled. For
κ = 1 and λ = −1 we found that ρ̂IME is separable when a � 0.8564 and entangled otherwise.
The lines l and m in figure 2 correspond to a = 0.8564 and a = 8/9, respectively. The
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Figure 2. Boundaries between the regions corresponding to separability and entanglement for
states described by the density matrices ρ̂IME (line l), ρ̂MS (linem) and ρ̂S (line n). The expressions
for the matrices ρ̂IME, ρ̂MS and ρ̂S are given, respectively, by equations (24), (29) and (38).

curve n represents the equation Q(a, α) = 0. The density matrices ρ̂ME (ρ̂MS) are entangled
for points (a, α) lying above the line l (m) and separable otherwise. On the other hand, the
matrices ρ̂S are separable when (a, α) lies below the curve n and entangled if (a, α) lies above
n. Of particular interest are the regions I and II. In region I the (‘true’) density matrix to be
inferred, ρ̂S, is separable, while the associated (‘inferred’) matrix ρ̂MS, provided by Rajagopal’s
inference scheme, is not. In region II things are quite different: the inference scheme provides
a separable statistical operator ρ̂MS while the matrix to be inferred, ρ̂S, is entangled. It is clear
that the MaxEnt minimum-σ 2 inference procedure advanced by Rajagopal [4, 5] generates
fake entanglement when applied to states ρ̂S associated with points (a, α) belonging to region
I . Contrary to previous evidence obtained when the Bell observable mean value is taken as
the prior information [3–5], we must conclude that the MaxEnt minimum-σ 2 scheme does not
provide a general solution to the problem of fake entanglement.

The comparison of the amount of entanglement of formation exhibited by the states ρ̂S

and ρ̂MS enables us to study the problem of fake inferred entanglement in a quantitative way.
The curves depicted in figure 3 display the behaviour of E[ρ̂MS] and E[ρ̂S] as a function of
the mean value a of the observable Â (again, with κ = 1 and λ = −1). The upper solid curve
corresponds toE[ρ̂IME], the lower solid curve toE[ρ̂MS], and the dashed and dot-dashed curves
to E[ρ̂S], for different values of the parameter α. The results exhibited in figure 3 illustrate
how, for each given value of the input data a = Tr(ρ̂Â), the entanglement of formation E
of the density operators yielded by both the standard MaxEnt method (ρ̂IME) and Rajagopal’s
scheme (ρ̂MS) compare with the entanglement of formation of the state to be inferred (ρ̂S). It
is clear from figure 3 that, with regard to the behaviour of the inferred amount of entanglement
as a function of the input information (at least when this input data consists of 〈Â〉), the
prescription advanced by Rajagopal does not appreciably differ from the standard MaxEnt
result. In particular, both prescriptions tend to yield the same results in the limit a → 1.



On ‘fake’ inferred entanglement 6453

0

0.25

0.5

0.8 0.9 1

E
(a

)

a

α=.05

α=.15

α=.25

α=.35

α=.5

α=.6

α=.7

Figure 3. The entanglement of formationE[ρ̂] as a function the expectation value of the observable
Â (equation (15)) with κ = 1 and λ = −1, corresponding to ρ̂IME (upper solid curve), to ρ̂MS (lower
solid curve), and to ρ̂S, for the values of α indicated in the figure (dashed and dot-dashed curves).
The expressions for the matrices ρ̂IME, ρ̂MS and ρ̂S are given, respectively, by equations (24), (29)
and (38).

Notice that the MaxEnt minimum-σ 2 matrix ρ̂MS does not depend upon the value of
−(λ/κ), unlike what happens with the standard MaxEnt matrix ρ̂IME. This dependence upon
−(λ/κ) is depicted in figure 4, where we can appreciate the behaviour of the entanglement of
formation E[ρ̂] as a function of (a/κ) corresponding to (i) the density operators ρ̂MS (lower
solid curve) and (ii) the MaxEnt density matrices ρ̂IME associated with different values of the
ratio −(λ/κ) (dashed curves). The upper solid curve in figure 4 corresponds to the particular
case −(λ/κ) = 1. The MaxEnt density matrices ρ̂IME are entangled for values of a greater than
a critical value ac depending on −(λ/κ). The behaviour of (ac/κ) as a function of −(λ/κ) is
depicted in the inset of figure 4.

4. Prior information associated with more general observables

In this section we are going to assume that the prior information is given by the expectation
value of an observable of the form

D̂ = |1〉〈1| + α1|2〉〈2| + α2|3〉〈3| (40)

with eigenvectors

|1〉 = |+〉
|2〉 = |−〉
|3〉 = sin θ |10〉 + cos θ |01〉
|4〉 = cos θ |10〉 − sin θ |01〉

(41)

and eigenvalues 0, 1, α1, α2, such that

α2 > α1 > 1. (42)
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Figure 4. The entanglement of formation E[ρ̂] as a function of (a/κ), where a is the expectation
value of the observable Â (equation (15)), corresponding to ρ̂MS (lower solid curve) and to the
MaxEnt density matrices ρ̂IME associated with different values of the ratio −(λ/κ) (dashed curves).
The upper solid curve corresponds to the particular case −(λ/κ) = 1. The expressions for the
matrices ρ̂IME and ρ̂MS are given, respectively, by equations (24) and (29). The critical values
(ac/κ) where the matrices ρ̂IME begin to be entangled are depicted in the inset as a function of
−(λ/κ).

The operator D̂ cannot be measured using only LOCC operations. In this respect it behaves
like both the Bell observable and the observable Â introduced in the preceding section.

The mean values d = 〈D̂〉 and σ 2 = 〈D̂2〉 are related by

σ 2 − d = α1(α1 − 1)〈2|ρ̂|2〉 + α2(α2 − 1)〈3|ρ̂|3〉. (43)

In order to apply the inference method advanced by Rajagopal we need first to determine the
form adopted by the statistical operators ρ̂ characterized by the minimum possible value of σ 2

compatible with a given value of d . As we will presently see, the particular form exhibited by
the minimum-σ 2 density matrices depends on the value of the constraint d. It is clear from (40)
and (42) that 0 � d � α2. The minimum-σ 2 matrices adopt three different forms associated,
respectively, with d-values belonging to the intervals [0, 1], [1, α1] and [α1, α2]. It follows
from (43) that

0 � d � 1 ⇒ ρ̂MS = d|1〉〈1| + (1 − d)|4〉〈4|. (44)

In order to analyse the case corresponding to d ∈ [1, α1] it will prove convenient to introduce
the definitions

p = 〈1|ρ̂|1〉
S = 〈2|ρ̂|2〉 + 〈3|ρ̂|3〉
s1 = 〈2|ρ̂|2〉/S
s2 = 〈3|ρ̂|3〉/S.

(45)
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All the above quantities belong to the interval [0, 1]. Furthermore, we have s1 + s2 = 1 and
0 � p + S � 1. The expectation value of D̂ is given by

d = Tr(ρ̂D̂) = p + S(s1α1 + s2α2) (46)

and the minimization of σ 2 is equivalent to finding the minimum value of the quantity

M = S(s1α1(α1 − 1) + s2α2(α2 − 1)). (47)

The variables p, S, and s1 verify

0 � p + S = d − S(s1(α1 − 1) + (1 − s1)(α2 − 1)) � 1. (48)

Notice that once a particular value of d is fixed the parameters p, S, and s1 are no longer
independent quantities: they are related by (46) (which is equivalent to the equality relation
in (48)). Regarding S and s1 as independent quantities, the optimization problem we have
to solve is to find the pair of numbers (S, s1) belonging to [0, 1] that, complying with the
inequalities in (48), make M a minimum. If we are given a pair (S, s1) satisfying the
aforementioned requisites, it is clear that we can decrease S until the last inequality in (48)
becomes an equality. Hence, the optimum (S, s1) must verify

S = d − 1

s1(α1 − 1) + (1 − s1)(α2 − 1)
(49)

and M can be rewritten as a function of the sole variable s1 (recall that s2 = 1 − s1)

M = (d − 1)
s1α1(α1 − 1) + s2α2(α2 − 1)

s1(α1 − 1) + (1 − s1)(α2 − 1)
. (50)

Notice that (49) determines a value of S that, for any value of s1 ∈ [0, 1], belongs to the interval
[0, 1]. Introducing now the quantities

t1 = s1(α1 − 1)/[s1(α1 − 1) + (1 − s1)(α2 − 1)]

t2 = (1 − s1)(α2 − 1)/[s1(α1 − 1) + (1 − s1)(α2 − 1)]
(51)

the function M to be minimized can be cast under the guise

M = (d − 1)(t1α1 + t2α2) (52)

which clearly adopts its minimum value when t1 = 1 and t2 = 0. That is, the minimum obtains
when s1 = 1. Summing up, the minimum-σ 2 density matrix compatible with a given value of
d ∈ [1, α1] corresponds to

S = d − 1

α1 − 1
s1 = 1.

(53)

The concomitant density operator reads

ρ̂MS =
(
α1 − d

α1 − 1

)
|1〉〈1| +

(
d − 1

α1 − 1

)
|2〉〈2|. (54)

A similar reasoning can be applied in order to obtain ρ̂MS when α1 � d � α2. In this case,
however, the variable t1 in equations (51), (52) cannot reach the value 1 because that would
imply S > 1 in (49). Since the largest possible value of S is 1, the optimum value of t1 (and
of s1) is the one making S = 1 in (49). This, in turn, implies that p = 0. In this case the
minimum-σ 2 density matrix is

ρ̂MS =
(
α2 − d

α2 − α1

)
|2〉〈2| +

(
d − α1

α2 − α1

)
|3〉〈3|. (55)
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Figure 5. The entanglement of formation as a function of the expectation value of the observable
D̂ with α1 = 2 and α2 = 3 (see equations (40)–(42)) evaluated, for different values of θ , on (i) the
MaxEnt density matrix exp(−βD̂)/Tr(exp(−βD̂) (solid curves) and (ii) the state exhibiting the
minimum value of 〈D̂2〉 compatible with 〈D̂〉 (dashed curves).

An interesting feature of the minimum-σ 2 density matrix associated with D̂ is that, for
this observable, the requirement of minimizing 〈D̂2〉 under the constraint imposed by 〈D̂〉
completely determines the matrix ρ̂MS. That is, the MaxEnt principle plays no role whatsoever
when implementing Rajagopal’s prescription for the observable D̂. This seems to be a
consequence of the non-degenerate character of the eigenvalues of D̂. The entanglement
of formation E(ρ̂MS) of the minimum-σ 2 state, as a function of the input data d = 〈D̂〉, is
compared in figure 5, for different values of θ , with the entanglement of formation E(ρ̂ME) of
the standard MaxEnt state

ρ̂ME = 1

Z
exp(−βD̂) (56)

whereZ = Tr(exp(−βD̂)). The most remarkable feature of figure 5 is that, for extended ranges
of d-values, the minimum-σ 2 state is much more entangled than the standard MaxEnt state.
Hence, in this case ρ̂MS is likely to create a larger amount of fake inferred entanglement than
the one generated by ρ̂ME. As a matter of fact, those values of d leading to a separable MaxEnt
matrix ρ̂ME and to an entangled matrix ρ̂MS provide explicit examples of fake entanglement
generated by Rajagopal’s scheme, the standard MaxEnt matrix itself describing the separable
state compatible with the input information. It is remarkable that this occurs even in the case
θ = π/4, corresponding to input data associated with an observable diagonal in the Bell basis.

Finally, notice that the study we have done in this section can be extended to the general
case where the input information consists of the expectation value of an arbitrary observable
endowed with a non-degenerate spectrum. Given an observable

D̃ =
4∑
i=1

di |i〉〈i| (57)
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with d1 < d2 < d3 < d4, let us consider the new observable

D̂ = D̃ − d1Î

d2 − d1
. (58)

It is clear that the operator D̂ is of the form (40), with α1 = (d3 − d1)/(d2 − d1) and
α2 = (d4 − d1)/(d2 − d1), and that the minimization of 〈D̂2〉 for a given value of 〈D̂〉 is
equivalent to the minimization of 〈D̃2〉 for a given value of 〈D̃〉.

5. Conclusions

As shown by Horodecki et al [1], the quantum state obtained by recourse to the standard
MaxEnt inference prescription may be an entangled one even if there exist separable states
compatible with the prior data. This situation constitutes a particularly clear instance
of the problem of ‘fake’ inferred entanglement. In order to overcome this difficulty,
but still within the strictures of the standard MaxEnt perspective, Rajagopal advanced
an alternative approach to the inference of entangled states [4]. His idea is that of
considering the MaxEnt state consistent with both the mean value of the observable Â
one is interested in and the mean value of its square Â2, adopting for 〈Â2〉 the minimum
value compatible with a given value of 〈Â〉. In the case of Horodecki’s example (where
the prior information consists of the expectation value of the Bell operator) Rajagopal’s
procedure yields a separable state whenever there are separable states compatible with the
available data [4]. This, together with other results recently reported in the literature [3, 5],
constituted evidence supporting the idea that the minimum-σ 2 scheme may provide an
appropriate and general way of solving the problem of fake inferred entanglement. However,
all the aforementioned evidence was based on the study of particular examples in which
the prior information was related to the Bell–CHSH observable (diagonal in the Bell
basis). In order to find out to what extent the minimum-σ 2 prescription provides a reliable
inference scheme of general applicability, we have explored here its performance when
the prior information is related to more general observables, emphasizing those situations
involving observables non-diagonal in the Bell basis. We have found explicit examples,
related to this kind of observable, in which the minimum-σ 2 inference procedure leads to
entangled density matrices even if there exist separable states compatible with the input
data. This means that the minimum-σ 2 prescription is not free from the fake entanglement
difficulty.

There is no doubt that Jaynes’ MaxEnt principle has an important role to play in any
appropriate scheme for the inference of entangled quantum states. Indeed, one of the most
remarkable features of Jaynes’ principle is its robustness: usually, when it seems to fail, the
real problem is not the inadequacy of the MaxEnt principle itself, but rather that some piece
of relevant (prior) information is not being taken into account. As recently pointed out by
Brun et al [7], the various inference schemes recently advanced to solve the fake inferred
entanglement problem admit of an interpretation within the strictures of Jaynes’ approach.
These inference prescriptions may be regarded as implementations of the MaxEnt principle
in which some extra prior information (that may not consist just of the expectation values of
some observables) is assumed to be known. This is certainly the case with Rajagopal’s MaxEnt
minimum-σ 2 proposal, which assumes extra information related to the square of the relevant
observable. However, the results reported here show that this approach works only in very
special situations.

Besides enabling us to asses the usefulness of the minimum-σ 2 scheme, the present
effort also sheds some new light on the entanglement features exhibited by the standard
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MaxEnt principle within contexts more general than those previously considered in the
literature [1, 3–5].
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